Uncertainty of Forest Biomass Estimates in North Temperate Forests Due to Allometry: Implications for Remote Sensing

نویسندگان

  • Razi Ahmed
  • Paul Siqueira
  • Scott Hensley
  • Kathleen Bergen
چکیده

Estimates of above ground biomass density in forests are crucial for refining global climate models and understanding climate change. Although data from field studies can be aggregated to estimate carbon stocks on global scales, the sparsity of such field data, temporal heterogeneity and methodological variations introduce large errors. Remote sensing measurements from spaceborne sensors are a realistic alternative for global carbon accounting; however, the uncertainty of such measurements is not well known and remains an active area of research. This article describes an effort to collect field data at the Harvard and Howland Forest sites, set in the temperate forests of the Northeastern United States in an attempt to establish ground truth forest biomass for calibration of remote sensing measurements. We present an assessment of the quality of ground truth biomass estimates derived from three different sets of diameter-based allometric equations over the Harvard and Howland Forests to establish the contribution of errors in ground truth data to the error in biomass estimates from remote sensing measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Macroecological Analysis of SERA Derived Forest Heights and Implications for Forest Volume Remote Sensing

Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which...

متن کامل

Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations

Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomas...

متن کامل

Mapping Aboveground Biomass using Texture Indices from Aerial Photos in a Temperate Forest of Northeastern China

Optical remote sensing data have been considered to display signal saturation phenomena in regions of high aboveground biomass (AGB) and multi-storied forest canopies. However, some recent studies using texture indices derived from optical remote sensing data via the Fourier-based textural ordination (FOTO) approach have provided promising results without saturation problems for some tropical f...

متن کامل

Forest Biomass Estimation using Polarimetric SAR Interferometry

Forest biomass is one of the most important parameters for global carbon stock modelling yet can only be estimated with great uncertainties. Unfortunately, conventional remote sensing techniques for the estimation of forest biomass are not able to provide estimates on a global scale. An alternative approach is based on forest height estimates from single frequency polarimetric-interferometric S...

متن کامل

Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks

The relation between satellite measurements of the normalized difference vegetation index (NDVI), cumulated over the growing season, and inventory estimates of forest woody biomass carbon is estimated statistically with data from 167 provinces and states in six countries (Canada, Finland, Norway, Russia and the USA for a single time period and Sweden for two periods). Statistical tests indicate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013